International Journal of Theoretical Physics, Vol. 37, No. 11, 1998

Peristaltic Motion of a Particle—Fluid Suspension in
a Planar Channel
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We analyze the mechanics of peristaltic pumping of a particle—fluid suspension
in a channel. A perturbation series (to second order) in dimensionless wave
number of an infinite harmonic travelling wave is used to obtain an explicit form
for the velocities and a relation between the flow rate and the pressure gradient
in terms of the Reynolds number, concentration of the particles, suspension
parameters, and the occlusion. We discuss the effect of the concentration of the
particles, the Reynolds number, and the wave number on the pressure rise,
peristaltic pumping, augmented pumping, and backward pumping. We also discuss
the phenomenon of trapping.

1. INTRODUCTION

Peristaltic pumping has been the object of scientific and engineering
research during the past few decades. It occurs due to the action of a progres-
sive wave which propagates along the length of a distensible tube containing
liquid. The pumping of fluids through muscular tubes by means of peristaltic
waves is an important biological mechanism.

Study of the mechanism of peristalsis from both the mechanical and
physiological viewpoints has been the object of scientific research. Since the
first investigation of Latham (1996), several theoretical and experimental
attempts have been made to understand peristaltic action in different situa-
tions. A review of much of the early literature is presented by Jaffrin and
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Shapiro (1971). A summary of most of the experimental and theoretical
investigations reported with details of the geometry, fluid, Reynolds number,
wavelength parameter, wave amplitude parameter, and wave shape has is
given by Srivastava and Srivastava (1984).

Fluid dynamics of a particulate suspension (the suspended matter may
consist of solid particles, liquid droplets, gas bubbles, etc.) has from historic
times been the object of scientific and engineering research. Theoretical study
of this fluid system is very useful in understanding various engineering
problems concerned with powder technology, rain erosion in guided missiles,
sedimentation, atmospheric fallout, combustion, fluidization, electrostatic
precipitation of dust, nuclear reactor cooling, acoustics batch settling, aerosol
and paint spraying, luner ash flows; in medicine, where erythrocyte sedimenta-
tion has become a standard clinical test; and in oceanography as well as other
fields. The particulate suspension theory of blood has become the object of
scientific research (Hill and Bedford, 1981; Srivastava and Srivastava, 1983;
Trowbridge, 1984; Oka, 1985). The flows of suspensions of particles in a
fluid have been studied by Marble (1971), Drew (1979), Bedford and Drum-
heller (1983), and Soo (1984). Applications of the theory of particle—fluid
mixtures to microcirculation and erythrocyte sedimentation include the work
of Bungay and Brenner (1973), Hill and Bedford (1981), Srivastava and
Srivastava (1983), Trowbridge (1984), and Oka (1985). Peristaltic transport
of a particle—fluid suspension was studied by Hung and Brown (1976), Kaimal
(1978), and Srivastava and Srivastava (1989, 1995).

Most of the analytical studies use perturbation series in a small parameter
such as the amplitude ratio or the dimensionless wave number, but it appears
that no rigorous attempt has been made to study the effects of Reynolds
number, wave number, and concentration of the particles on the pressure
rise, peristaltic pumping, augmented pumping, and backward pumping for a
particle-fluid suspension. The purpose of this paper is to study the peristaltic
pumping of a particle—fluid suspension in a planar channel.

A regular perturbation series is used to solve the present problem;
variables are expanded in a power series of the wave number o, which is
defined as the ratio of half-width of the channel to the wavelength of the
peristaltic wave. Closed-form solutions up to order o are presented. The
pressure rise per wavelength is obtained as a function of the time-averaged
flow rate.

2. FORMULATION OF THE PROBLEM

Consider the two-dimensional flow of a mixture of small, spherical,
rigid particles in an incompressible Newtonian viscous fluid in an infinite
channel having width 2. We assume an infinite wave train traveling with
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velocity ¢ along the walls. We choose a rectangular coordinate system for
the channel with X along the centerline in the direction of wave propagation
and Y transverse to it.

The equations governing the conservation of mass and linear momentum
for both the fluid and particle phase using a continuum approach are expressed
as follows (Drew, 1979; Srivastava and Srivastava, 1989):

Fluid phase:

(1 = OpF= (1 =€) VP + (1 = OO W+ CSOW, =) (1)
V'Wf: 0 (2)

Particulate phase:

cp, dZ = — CVP + CS(W; — W) (3)
V-W,=0 (4)

In equations (1)—(4), W;, W, denote fluid phase and particulate phase
velocity vectors, respectively, d/dt denotes the material time derivative (the
overbar refers to a dimensional quantity), py, p, are the actual densities of
the materials constituting the fluid and particulate phase, respectively, (1 —
C)py, Cpp denote the fluid phase density and the particulate phase density,
respectively, P denotes the pressure, C is the volume fraction density of the
particles, Ws(C) is the particle fluid mixture viscosity, and S is the drag
coefficient of the interaction for the force exerted by one phase on the other.

The concentration of the particles is considered so small that the field
interaction between particles may be neglected. We choose the volume frac-
tion density to be constant. The expression for the drag coefficient for the
present problem is selected as

_ W,
§="2M0)
v(e) = LE3I8C = 3¢ + 3¢ )
[2 —3C)?

where W is the fluid viscosity, and « is the radius of the particles. Relation
(5) represents the classical Stokes drag for small particle Reynolds number,
modified to account for the finite particulate fractional volume through the
function A'(C) obtained by Tam (1969). We use the empirical relation for
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the viscosity of the suspension suggested by Charm and Kurland (1974),

1
(C) =
us(C) Hol—qC

11
g = 0.07 exp [2.49C + % exp(—1.69C)] (6)

where T is the absolute temperature (K). The viscosity of the suspension
expressed by this formula is found to be reasonably accurate up to C = 0.6.
Let (U, V), (Up, V) be the velocity components for the fluid and

particulate phases in the X and Y directions, respectively.
The geometry of the wall surface is defined as

Z=b+am{%H}—m] (7)

and the boundary conditions are

=0, V;=V,=0 at Y=0

SISl
o 9<’|L%I

at Y=1h (8)

where a is the wave amplitude and A is the wavelength. We also assume the
wall to have only a transverse motion.

We shall carry out this investigation in a coordinate system moving with
the wave speed, in which the boundary shape is stationary. The coordinates
and velocities in the laboratory frame (X, Y) and the wave frame (x, y) are
related by

;Z}—cl, )_12;’
w=U-~—c¢, w,=U —c 9)
;f_l_/f 5 ;p:I_/p

where (uys, vy), (u,, v,) are the velocity components in the wave frame.
If we employ these transformations in the governing equations of motion
(1)—(4) and then introduce the dimensionless variables

w1 %, &, _% | _L

x_ - - b - b - b -
)\‘ ’ y ba f ¢ P ¢ f ¢ P c
- e

p=lld o p 2 e (10)
b Acs
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we find that the continuity equations, after defining the dimensionless stream
functions W/(x, y) and W¥,(x, y) by

_ ¥ _ ¥ __ o __
Up ay s Up ay s vf a ax s Vp a ax (11)

are satisfied identically, and after eliminating the pressure terms, the equations
of motion become

(1 = C)a- Re [¥V2 ¥y — V02V, ] = VAV, + CM(V2Y, — V2 (12)
Ca- Re[¥, VY, — V,.V?¥,,] = CNV*¥, — V2V, (13)

where the dimensionless wave number o, the Reynolds number Re, and the
suspension parameters M and N are defined by

— _CbL

o -on

P v = —Sb%0r
1 -0’ (1 = C)upy

o = 28
A

and
V2 = o2 %22 + %22 (14)

3. RATE OF VOLUME FLOW AND BOUNDARY CONDITIONS

The instantaneous volume flow rate in the fixed frame is given by
(Ungarish, 1993)

@=u—cqwa@iaﬁ (15)
0

0, = cjh U, (X, Y, 1) dY (16)
0

On=(1—C) Jh U(X, Y, 1) dY + CJ UX, Y, ) dY (17
0 0

where Qr, O,, and Q,, are the volume flow rate for the fluid phase, particulate
phase, and the mixture, respectively; % is a function of X and .
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The instantaneous volume flow rate in the wave frame is given by

gr=(1-0C) J” W) d (18)
0
h— — - _
qp:CJ up(x, y) dy (19)
0
he — — = h— — - _
qm = (1 —C)J ur(x, y) dy+CJ up(x, y) dy (20)
0 0

where / is a function of x alone.

We shall be interested only with the volume flow rate of the fluid in
this study. On substituting (9) into (15) and making use of (18), we find that
the two rates of volume are related through

Or=qr+ (1 = C)ch 21
The time-mean flow over a period T at a fixed position X is defined as

— 1 T
Or= T J Oy dt (22)

0

Substituting (21) into (22), and integrating, we get

Or=qr+ (1 = Clac (23)

On defining the dimensionless time-mean flows 0 and F, respectively,
in the fixed and wave frame as

o=—%L— p=—UL— (24)
(1 — C)ac (1 — C)ac
we find that (23) may be written as
0=F+1 (25)
where
F= J %f dy = ¥y (h) — ¥4(0) (26)

We note that /& represents the dimensionless form of the surface of the
peristaltic wall:

h(x) =1+ ¢ sinx (27)
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where ¢ = b/a is the amplitude ratio or occlusion. If we choose the zero
value of the streamline at (y = 0), then

V) =F (28)

The boundary conditions for the dimensionless stream function in the
wave frame are

Y=Y, =0, Wy =¥y =0 at y =20 (29)
lPﬁ,:—l, le:F at y:/’l

4. PERTURBATION SOLUTION

In order to solve the present problem, we expand the flow quantities in
a power series of the small parameter o as (Siddiqui and Schwarz, 1994)

VYy=¥p+a¥y +a?¥p+---
VY, =¥+ a¥, +a?¥p+---
F=Fy+ oF + d’F, + - -
and
On substituting (30) into (12), (13), and (29) and collecting terms of
equal powers of o and then equating the coefficients of like powers on both

sides of the equations, we obtain the following set of problems.
System of Order Zero:

leOyyyy + CM (quﬂyy - leOyy) =0 (3D)
CNYoyy = Fpo) =0 (32)

(30)

with the boundary conditions

Vo =0 =0, Yoy = Yoo =0 at y=20

le() = F(), le()y = —1 at y = h (33)

The solutions of the stream functions and the axial velocities are given as
3 2y

Yo =—=(F+h el 34

10 , (Fo + 1) (3 PERR Bl (34)

¥,

3
—%(Fo+h) (-V——X)—erMy (35)

3 h M3
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3 v?
= ——(Fy + —1]—-1 36
un Zh( 0 h)(hz ) (36)

o+ h)
e (37)

Upo

3 2
—E(F0+h)(‘2—2— 1)— 1+

System of Order One:
(1=C)-Re [qjﬂ)yquﬂx)w - quﬂxqjﬂb’yy] = le iy T CM (lelyy - qjﬂyy (38)
C+ Re[YpoVpoxyy = WporWpopy] = CN(Wpipy = Wyrp) (39)

The solutions of (38) and (39) subject to the first-order boundary
conditions

Y=Y, =0, Yoy = Yoy =0 at y=0 (40)
le] = Fi, lPﬂy:O at y=nh
are given as

Wh = b61(y" = 3h%° + 2h%) + ba(y° — 20 + h'y)

3 (v 22
+=F T - 41
2 ‘(h 3h3) 1
42 18
Y, =05y =305+ 20% — =y +—pnt
pl 1(y y y My M Y

+ by y5—2h2y3+h4y—%y3+1ﬁh2y)+(1 —C)

1 1)\ (1 A T
CRe|&— == [+ 4=
e(M N) (20 buoy” + ¢ by )

3. (v, 2v 2
+E+STR|T+ 5 - 42
2 ‘(h Mi® 3k} “42)
where
1 — C)ReB :
b = (—850)_eﬁb10, b = —% (3F% + S5Foh + 2h2)

b, = 1 _1§0Re b, by = % (3F% + 3F0h + hz)
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3(1 — CYRe (6F3 + 6Foh + h)h'

Ey = Ey + En + Ep, Ey =

MN h?
1 Fo(3F, + hh'
En=—2(1-C)Re
! PRUERASY (M N) h? ’
_ 311—C!Re
Ep, = — bio
NM?
- CM
=1+ 43
B (1 — C)N (43)

and the axial velocities at this order take the form

un = by (Ty® — 9h*y? + 216 + by (5y* — 6h%y? + k)
3E y_2
+2= 1 - 44
2 h h? “44)
Up :51(7)16—9}14)}24-2}16 210y4+%h4)

+ 52(5)14 —6h*y* + ht —

1 1
- Re b f 4= b

3F 2 2
+E+T 1+ 5 - 4
: Zh( MHK? hz) (43)

System of Order Two:
(1 = C)Re[ Y11, Yoy + Yoy Yy — YWy — Yo'l

= qjﬁ)’yy + ijfﬁwy}’ + CM (qjﬂyy - qjﬁyy) (46)
C: Re [qulyqu()xyy + quﬂyqul»\‘yy - qul»\‘quﬂ)’)’y - quﬂxqulyyy]
- CN(lPﬁyy - leZyy) (47)

Using the zeroth-order and the first -order solutions in (46) and (47)
and then applying the boundary conditions

Yp=Y,=0, Wiy = Wpoy =0 at y =0 (48)
Y, = P, Yy, =0 at y=nh
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we find that the stream functions ¥y, ‘P, turn out to be

1 1
Tﬁ_ﬂ _y” —iy3h8+§yh10)+ a (y9—4y3h6+3yh8)

660 {12 12 3024

axn (1 ; 3 5., . 1 ¢ @l 5 1 3.5 1 4
- — =%t + = nt |+ — <+
105 (8y g7 47 20167 37 6"

ay [1 5 1 10
Vo ="~y ==y +yh'" ———(11y° = 3yh*
v 660[12y 12”7 37 Top M7= 0

a2

24
+ P = 4y’h + 3yn® — = 3y — i’
3024[y y y M(y yh”)

ax | 1 3 1 3
| oy Ryt Ly =Ty = 3yt
105[8y g’ PRV L

axy | 1 1 1 2
+ o oy Syt =T 5y = 3
0le? ~37 PR 3M(y yh”)

+ziy” + Zzy7 + Z3y5 + Z4y3 + zsy

3 (v, 2v
+= R T+ -
277 (h M 303 (50)
and the axial velocities at this order take the form

a, (11 w15

azy

1
= 175 e =pt0 8 _ 2,6 8
= e |27 Tt sk )+3024(9y 129%h° + 3h%)
as (7 ¢ _ 92 5,4, 15 au (5 I
B+ = 0S|+ — >+ h
105 (8y gV Ty S0 (g2~ At
3L
M) Fz(h B h3) (51)
_an |11 4y 15 5,5 1 g 10 § X
= - hS 4+ = R0 — == (99" — 3
e 660[12y 12”7 3 1am O )

an 24
+ 9y® — 1292h° + 3h% — = (21y® — h*
3024[y Y m P )
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where

an3 7 6
+_ -_— —_
105 [8 Y

_§4 271.2 l4 L 2 2
+ — 2+ =Rt = 1592 — 3h
[y y 3M( y )

a4

20| 6

9
8

6

1 3 \
= 274 =176 4 4
h + h — 35 — 34

Y 4 4M( Y )

2

2905

ho MBS R

1 2 ?
+9z1p% + T2y ® 4 Szp?t + 3zt 4+ zs + ;Fz( + — _L) (52)

az — (1 - C)RC‘E aio,

a4

aio

aihl

= CR
an =01 —C)Refair — (1 —C) Re - ai» + Ne ais
R
an =1 —C) Re - ais + C ea15,
N
CR
(1 = C)Re - ais + a7 + < ag
QBFy + 2k’ !Fg+h!
—84 h4 El h3 El.\‘;
Fol' Fo+h
5 h}; by + 21 3 bix
QBFy + 2k’
15 &1 + 27 &1\:

a2

a3

aig

ais

daie

h4

(BF, + 2k’ Fy +
630 2 h4hh 51+126_0h3_h51x

Wb L+ (B3Fy + 2k’ Fo +
90F}21 §1+103Fh h&l,\'+63 h4hh§2—6 h&zx
1g0 BEot 2 242“’ &3+604;§3\

o Ealt’ 3F) + h (3Fo + 2k’
02 & + 3 “h Er + 3 ¥ §4+34;§4\
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Fo + 2h)h" 2F, + hh'?
an = —6 (3F, - hh n 36( 0 Sh)h ’
h h
(BF, + 2hh’
ais = 18 e & + 18 &5\
= CMRe
=Bbh—"" b
S =pb 2001 — C)N> "'
= . CMRe Re
=Ba - —— = b — 25y,
&=PBc 61 — C)N 20, & 2 = Don b
= . CM 6 - ~ Re
=Ba+——| B -2¢ =& -5
=P c R —C)N[ 1 M61:|, & = on 22
| = - —2 =2 26 +
C1 2h3 3b1h Ezh c3 I bih bah
1 1 1
z1 7 ( C)Re (M N) a
_ (U= CWRe[ S5GF+20k  9F +h
= - 4 O — 3 Oy
7 2 h 2 h
4 105 F (1 )51
2 hr M N
13F + h 105(3Fg + 2k’ 21
+ b — 2 1 — 3 b,
2 h MNh MNh
1 3 (3F, + 2hh’ 3F, +h 45 Foh'
=<1 - CO)Re| ~2hth,, RhL
55 )e[z Bt Ty g Ty
S3F, +h (BF, + 2k’
p2o g - \
2 TR T e MNh3 §3]

M3y

2 Kt 2 i3

| (3Fy + 20’ Fy+
2121;4 S —C)Re[i 3 bh o 3Eth

o, + sy
? > MNE MNh

9 Folt' 33F 4+ h (3Fy + 2h)h’ g Foth
2 p? 2 — B 3 o
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b
z5 = 04y T (1 — C)Re[®sy — Wey] (O} :;24_%\3;’
mZJ_Q
M N
1 11~ 1 6 - 3Foh'
= |- — = _ E —
3 (M N)CS N( 1 MCl), Wy DMK
:3Fg+h ~
= omn ©
1 (3Fg+h 3(Fy+ h) ~ 6 -
== 3+ E — ¢
(O] N( v + e )(63 1 M“) (53)

where the prime and the subscript x denote the derivative with respect to x.
The expressions for the stream functions ‘P/(x, y) and ¥,(x, y), up to
second order, may be respectively written as

_ 3 2y

+0L[51(y7—3h4y3+2h6y)+52(y5—2h2y3+h4y)
3
+§F11_l?
27"\ h o 3
ol [ v 5 55,1 g
- +
ta [660 (12y VS

+ 3he + 3ynt
3024 i)
an (L ; 3 5., 1 ¢ @l 5 1 5., 1 4
- — =3t + = nt |+ — =3+~ yh
105 (8y g’ 47 20 (67 37 6
+3p vl (54)
27\ 3nd

3
_ 3 Yoyl 3(Fy+h
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42 18
+of bi(y"=3hY 20y ==y + 0
OCI:I(.V y Ry =V Tyt

2 12
+ by (y5 —2h2y3+h4y—ﬂoy3+ﬂh2y)

1 1\(1 1
X(1—C)Re |————||=—=bwy’+ by’
( C) e(M N) (20b1oy 6bzoy)

3
+E1y+§F1 .2+_2V_3__V_3
27\ ME 3R

axn (1 5 ] 10
+o? | (" ==+ ph ———(11y° = 3K
[660(12y 127 37 1oy T =370

az 9 3,6 g 24 7 6
+ — 4y°h° + 3yn® — -
3004 (y y°h” + 3yh M(3y Yh ))

ax (1 3 1 3
toc oy Sy Rt Ty =7 Ty = 3kt
105 (Sy g~ PR VA )

aua(l s L 5, 1 4 2 3 2
+ - h+=yh" — S5y~ — 3yh
20(6y 37 PRy VS L

3 2 ’
9 3 2 A A
+ 21y’ + 2y + zy’ + zgy +25y+2F2 (h+Mh3_3h3):| (55)

The results of our analysis can be expressed to second order of the flow
rate by defining

F® = Fy + aF, + o’F, (56)

Then substituting Fo = F? — oF; — o’F, into (54) and (55) and neglecting
the terms greater than O (o), we obtain the second-order expression for the
stream function P/ in terms of the second-order flow rate F*:

3 3
Yo = 2 @ 4 [ E=—L) =
7 2( ) 3 y

+ a[Bi(y — 3h*yd 4+ 20%) + By(y® — 203 + k')

Ay [ 1 5 1
Lol AL =2 s Lo
O°[660 (12y o VA h
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A» 9 3,6 8
+ — 4y°h° + 3yh
3024 (y y yh°)

As (1 5, 3 5.4, 1 6
FERL o2 e 2y
105(8y g’ 47

Aa [l 5 1 5, 1 4
LR Sy
20 (6y 37 6"

3 2y 3 + i)
2) — _ 2) _ _
¥y , (FO h)(3h3 h) U7

- 42 18
+ OL[Bl(y7 —3h*3 + 20 — Eys + Eh“y)

N 20
+ B> (y5 — 2hzy3 + h4y — EyS

2909

(57)

12 1 1 1 1
+ =0+ =C)Re|— ——||=— By’ + =By’ | +
M y) ( )e(M N) (20 0y T g B ew

12M

Ay (1 5 1 10

A

24
+ S — 4y S 4+ 3RS — = 3y7 — i
3024(y y y M(y yh”)

A (1 ;3 5,4, 1 6 3 5 4
— | = —=yh*+=yh® ———(Ty> — 3yvh
105 |87 8”7 PRLTVAC R

Aafl 5 1 55 L 4 2 3 2
+— =y —Zyh +=yh — Sy” — 3yh
20 (6y 37 PR TVAC

+ 720’ + Zy + Zy + Zyyd + Zsy

and the axial velocities can be easily obtained, where

B = “;850)&&310 ,  Bio= —% GBFP* + 5F@ h + 2h?

Bz = LISO)&&BN, By = % (3F(2)2 + 3F(2)h + hz)

|

(58)
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_ 3 = C)Re (6F®? + 6F® h + h*)l’

€10

MN h’
B @ "o (&) 5
Ay = — 84 QBF +42h)h B — 60 (F 3+h) B,
h h
k= —3Bih* — 2B-h>, ks =2Bh° + Bh*
_ (1L —CRe[ 5QBF? + 2k 9F? +
4, = - 4 1 3 Ql,\‘
7 2 h 2 h
105 F%h (1 1)
L 105 1 1
> o \m NP
I3F2 +h p  10SGFY + 2k’ 21
2k b MNK* MmN Y
IT3F®? +h 3(F® + h) 6
Qg =— + +e——
6 N[ 2 MK ] [E3 ¢l ME1:| (59)

and the other coefficients are the same as those previously defined.

5. PRESSURE GRADIENT

When the flow is steady in the wave frame, one can characterize the
pumping performance by means of the pressure rise per wavelength. On
substituting (30) into the dimensionless equations of motion and equating
the coefficients of like powers of o on both sides of the equations. we obtain
a set of partial differential equations for 0Py/Ox, OP/0x, and OP,/0x.

We define the dimensionless pressure rise per wavelength in the wave
frame as

27

P

APFJ b (60)
o dx

Since OP/0Ox is periodic in x, the pressure rise per wavelength in the
longitudinal direction is independent of y and the integral in (60) can be
evaluated on the axis at y = 0 (Siddiqui and Schwarz, 1994). Putting (30)
into (60), we obtain

AP, = APy + aAPy, + 0?APy, + - - - (61)

and we compute the pressure rise per wavelength at each order for a wall
shape of the sinusoidal form defined by (27). Using the zeroth-, first-, and
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second-order terms for the pressure gradient in (60) and integrating from 0
to 27T, we obtain

APY = =3(1 — OF®It + I¥] + oL (62)

where

1 1 3 1
L=—-(1—-0C)| —58) +—Sp+——583+—S5
( )[264 T 2672 T 14077 T 10 2“]

Sy = —% (1 = C)? REPBEDL + 17F’L + 22F? I + 81

— CR
S = (1 — C)RePS1 — (1 — C)ReSiz + Teslg,

R
S23 = (1 - C)RESM + %S]s

R
S24 = (1 — C)ReSis + S17 + %Sm

and

12 —
Sy = ﬁ (1 — C)ReP [3FP’L + SFP I + 2Iy]

Sip = —% (1 = C)ReP[18F [y + STFC’L, + 45FOL + 131]

9 _CMRe

- 18F P + 69F®* L, + 77FPL + 261
10 (1 — C)N?

2 [—
Si3 = —ﬁ (1 = C)ReP [6FP°Ls + 13F° L, + 9F P + 21

Sy = —% (1 — C)ReP? | 33F@3L + 95F @2, + T0F O, + % 10]

_ _6CMRe
(1 — C)N?

6(1 — C)ReBI6F P°Is + 9F P2, + SFOL + D]

[6FP°Ls + 15F @[, + 13F L + 4D)]

Sis
36Re

+ [6FPL + 13F P + OF P + 21]
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Sig = % (1 — C)RePY30F L + T0F DL, + 44F O + 111]

+ ;—OC—I;Q [66F P35 + 87F @I, + 43FPL + 81

18CRe

+ [12F®3 4+ 18F P2 + 8FPIs + 1]

_9CMRe| 1
2N M N

:|[6F(2)31 + SFP? + FOrL]

54CRe
MN

3CMRe
(1 — C)N?

12[3FPL + 2D)]

[6F Py + 13FP?, + 9F P + 2]

+ [3FPI + 3FPL + D]

S17
Sis = —7—90 (1 — C) ReP [66F 2 I5 + 87F D[, + 43F L + 81

(63)

ISR
Ne [6FP3 L + 9F®@2 s + SFOLs + [

and we have

2n 742
I, = hn dx
0o N

_ _ cos™x
(1 + ¢ sinx)"’

Iy=m
11=2n[1—\/1— $%

and for n > 1

L=——r - 1) (64)
n—1
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where
21
I = —dx. ., It =2m,
o [1 + ¢ sin(x)]
2T 2T
It =—"7""""757, =——5=
(1 — ¢2)1/2 (1 — ¢2)3/2
om0 L m2 4 3¢Y
3= , 4=
(1 _ ¢2)5/2 (1 _ ¢2)7/2
and for n > 4

. — 1 2n — 3 (=21,
I"_1—¢2[(n—1)1"1 (n—1)1"2:| (65)

Here AP and F? are the pressure drop and the flow rate, respectively, in
the wave frame to the second order in Q.

APQ = APyy + APy, + &?AP,,  F® = Fy + aF, + o’F, (66)

We also note that the relation between the dimensionless flow rate in
the wave frame (F'”) and the time-mean flow rate in the fixed frame (6?)
is given by

02 =F% +1 (67)

6. NUMERICAL RESULTS AND DISCUSSION

We have obtained an analytical solution to the field equations for the
peristaltic flow of an incompressible Newtonian fluid with suspended particles
in a planar channel by using a regular perturbation series in terms of the
dimensionless wave number o. The results of our analysis are presented
as follows.

1. The pressure rise—flow rate relationship for the parameters Re, C, ¢,
and o.

2. The streamlines and trapping regions for the parameters Re, ¢, o, C,
and 0.

6.1. Pressure Rise—Flow Rate Relations

Figure 1 is a graph of the dimensionless pressure change per wavelength
AP with the dimensionless flow rate (6 for the case {Re = 0, ¢ = 0.3,
C=040a=0,1,2,3}. The graph is sectored so that the upper right-hand
quadrant () denotes the region of peristaltic pumping. where 8 > 0 (positive
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-20.0 -~ 14

- ! |
30.0,7% 03 0.0 0.5 1.0

0@
Fig. 1. Graph of the pressure gradient per wavelength AP{? vs. dimensionless flow rate 6
at Re = 0.0, C = 0.4, & = 0.3, and various values of the wave number o (---, & = 0.0,
Poiseuille flow).

pumping) and AP > 0 (adverse pressure gradient). Quadrant II, where
AP < 0 (favorable pressure gradient) and 0¥ > 0 (positive pumping), is
designated as augmented flow. Quadrant IV, such that AP > 0 (adverse
pressure gradient) and 8% < 0 is called retrograde or backward pumping,
the flow is opposite to the direction of the peristaltic motion.

Figure 1 shows that the peristaltic pumping rate 0@ increases (for the
same AP$?) as o increases for the case {Re = 0, ¢ = 0.3, C = 0.4}. Also
shown in Fig. 1 the case for ¢ = 0, which is Poiseuille flow of a particle—fluid
suspension between two plates.

Figure 2a is a graph of the pressure change per wavelength AP vs.
the observed flow rate 8 for the case {Re = 10, oo = 0.06, =03 C=
0.0, 0.2, 0.4, 0.59}. Figure 2b is similar to Fig. 2a except that ¢ = 0.6. We
observe that an increase in C results in a decrease in the pumping rate if all
other parameters are held fixed. Also, the backward pumping increases with
increasing concentration of the particles.

Figure 3 shows the effect of the Reynolds number on the pumping rate
for the case {C = 0.4, o = 0.2, & = 0.8, Re = 0.0, 50, 100, 150}. We
observe that an increase in Re results in an increase in the pumping rate if
all other parameters are held fixed.
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Fig. 2. Graph of the pressure gradient per wavelength AP{ vs. dimensionless flow rate 0

2915

(2)

at Re = 10 and o = 0.06, for various values of the concentration C, and (a) ¢ = 0.3, or (b)

¢ = 0.6 (---, & = 0.0, Poiseuille flow).



2916 Mekheimer, El Shehawey, and Elaw

200 :

H Re=0.0

. #——— Ro=5(.
—— Re=100.
' &4 Ro=150.

-3005 5.0 05 0 T5
(2

Fig. 3. Graph of the pressure gradient per wavelength AP vs. dimensionless flow rate
0@ at o = 0.2, ¢ = 0.8, C = 0.4, and for various values of the Reynolds number Re.
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Fig. 4. Graph of the ratio of the pressure change per wavelength for zero peristaltic pumping
to that for zero Reynolds number vs. Re* at C = 0.5, & = 0.06, and various values of the
amplitude ratio ¢.
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Fig. 5. Graph of the streamlines W/ at Re = 1., @ = 0.0628, C = 0.0, ¢ = 0.4, and 6? =
(@) 0.5, (b) 0.7, (¢) 1, (d) 2, () 5.

We define the pressure gradient required to obtain zero pumping (0@ =

0) as AP{2,. Figure 4 is a graph of P = AP/APE(Re* = 0) vs. Re* for
varying occlusion ¢ at C = 0.5, o = 0.06, which shows the effects of Re*
and ¢ on the pumping rate, where Re* is the modified Reynolds number
(Re* = Reo/2m) (Siddiqui and Schwarz 1994), which is the Stokes number.

6.2. Streamlines and Fluid Trapping

The phenomenon of trapping, whereby a bolus (defined as a volume of
fluid bounded by closed streamlines in the wave frame) is transported at the
wave speed, has been studied by several investigators (Shapiro et al., 1969;
Jaffrin, 1973; Siddiqui and Schwarz, 1993, 1994). Trapping occurs in a
hyperspace of the variables (9(2), ¢, Re, C, o). Here we have examined the
case of small Reynolds number. Figures 5a—5e are graphs of streamlines for
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Fig. 5. Continued.
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the conditions {Re = 1, ¢ = 0.4, C = 0.0, @ = 0.0628, and 0¥ = 0.5, 0.7,
1, 2, 5}; Fig. 5a shows that there is no trapping region for peristaltic pumping;
Fig. 5b shows the centerline trapped eddy, which is described by Siddiqui
and Schwarz (1994); Figs. 5c—5e show that the trapped bolus is small as
0@ increases.
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